
 
 
MONA: THERMAL AND MAGNETOHYDRODYNAMIC SOFTWARE 
 
 
1. Introduction 
 
The MONA package has been developed over the last two decades in order to be able to 
design the best possible cell in term of thermal and magneto-hydrodynamic cell state. MONA 
is designed for the determination of: 
 

• Cell energy balance (generation of heat = heat losses) 

• Steady and non stationary heat state of the cell 

• Temperature field 

• Heat flux distribution 

• Ledge profile (including convective effects) 

• Electrical potential field (bubbles effects will be implemented shortly) 

• Current density distribution 

• Induction magnetic field inside the cell 

• Force field inside the liquids (bubbles effects will be implemented shortly) 

• Velocity field in the metal 

• Velocity field in the bath 

• Pressure field in the liquids 

• Metal surface contour (with or without constant ACD) 

• Shell magnetization 
 
The solution is determined in two adjacent 3D cells, including 3D busbars systems. Boundary 
conditions for the heat equations are specified as functions of the temperature and has been 
calibrated on many heat flux measurements around the cell. Boundary conditions for Maxwell 
equations are given as integral constraints on the model boundary in order not to be obliged 
to mesh the air. Boundary conditions for Navier-Stokes equations can be chosen as Dirichlet 
or Neumann conditions at the boundary of the fluids. A turbulent anisotrop viscosity model is 
used that was calibrated on many velocity fields measurements. The model accepts all type 
of materials including ferro-magnetic steel plates. 
 
Using the steady state solution, a perturbation of all variables is assumed. The new set of 
equations for the first order perturbed system is solved to determine the “cell stability 
diagram”. By analyzing this diagram, the maximum possible current in the shell, the minimum 
metal level and all mhd impacts are determined. Following figures give some examples of cell 
geometry and results. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

Building a model: Collector bars 

 

 
 
Building a model: Cathode 
 

 
 
 
 
 
 
 

Building a model: Metal and bath 



 

 
 

Building a model: Anodes 
 

 
 
 

Building a model: One cell 
 

 
 



Building a model: Neighboring cells 
 

 
 
 
 
 
 

Building a model: Current density in a section of 
the neighboring cells 
 
 

 
 
 
 
 

 
 
 



Building a model: Two cells as the 3D model 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example of results: Induction magnetic field 
 



Induction magnetic field due to internal currents and external currents assuming no ferro-
magnetic effects. 
 
 
 
 

 
 
 

Example of results: Induction magnetic field in 
presence of steel elements (shell, 
superstructure)  
 
 
 

 
 
 
 
 
 



Example of results: Velocity field 

 

 
 
 
 
 

Example of results: Bath-metal surface contour 

 
 
 
 

 
 



 

MONA: THERMAL AND MAGNETOHYDRODYNAMIC SOFTWARE 
 
2. Program description 
 
Several papers published have discussed metal pad instabilities in aluminum 
reduction cells. Among them some are concerned with specific phenomena, 
as for example Kelvin-Helmoltz instabilities [1] or electrical contact problem 
between different materials [2]. Another one [3] deals with stability considered 
in its full generality and summarizes the different problems that remain to be 
solved. Beyond this it is somewhat surprising, at a time when most 
professionals are struggling to gain a few percents in efficiency, to see a new 
model proposed [4] that promises a 25% efficiency increase! 
Stability problems can be tackled from two different points of view. The first 
one, which is oriented towards an understanding of the physical mechanisms 
that cause instability, requires approximations and simplifying assumptions to 
derive models that hopefully keep the essence of the studied phenomena and 
that are in principle technically easier to deal with.   
The second approach takes advantage of the physical insights gained through 
the study of these simple models and considers the problem from the 
mathematical side. J. Descloux, M. Flueck and one of the authors use some 
of the powerful techniques developed in numerical analysis over the past fifty 
years to derive some appropriate methods and algorithms that make it 
possible to solve the MHD equations for geometries and busbar 
arrangements typical of real operating cells.  The accuracy of the results is 
such that engineers can safely rely on them in designing new cells or 
improvements to existing ones. 
The purpose of this document is to outline the different steps required in 
taking this numerical approach (see [5] and references therein), to discuss its 
advantages by way of some specific examples, and to compare it with some 
of the other ones proposed in the literature.  
 
2.1 The steady state 
 
It is customary when dealing with stability questions to start by computing a 
steady solution, i.e. a solution the values of which are, at each point in the 
space, time independent. One then derives and solves the equations for the 
time dependent fields describing small “fluctuations” around the steady 
solution (note that the fluctuations are also referred to as “perturbations” in the 
literature). Since the steady solution appears in the coefficients of the 
equations describing the fluctuations, it has to be determined with some 
accuracy; we believe that it must account for:  

• the actual geometry of the cell including all the anodes and the ledge, 

• the distribution of the currents in the actual busbar arrangement, and the 
resulting induced magnetic field, 

• the presence of ferromagnetic materials, 

• the anisotropic character of the flows, through an appropriate description 
of  turbulence.  

It may be worth noting that the shape of the aluminum/bath interface and that 
of the surface defined by the bottom of the anodes, which are both unknown, 



have to be calculated with the help of an algorithmic procedure (see for 
example [6]). In the case of an anode change, up to ten iterations may be 
needed to reach a stationary value. 
 
2.2  The linearized equations 

 
Once the steady state has been computed the next step consists in solving 
the equations describing the fluctuations. Let us say a few words about these 
equations.  
Although the linearized equations correctly described the fluid motion only in 
the time interval where its amplitude is small they contained the information 
which is necessary to detect all the potential instabilities which are not 
specifically produced by non linear effects. This possibility of characterizing 
the system by analyzing variations of small amplitudes only is the basis of the 
models that depend on linearizing the MHD equations. Linearizing here 
means expanding the solution around a steady solution in which, since they 
are very small, all the terms containing fluctuations of orders higher than one 
are disregarded. 
We emphasize the fact that, although linearized, these equations, and 
consequently their solutions, retain enough information to answer the stability 
questions we are concerned with. It is not our purpose in this document to go 
into the details of the linearization process needed to derive the equations and 
conditions describing the fluctuations (they can be found in some of the 
references of [5]). Suffice it to say that the equations and conditions so 
obtained are linear and hence much easier to handle mathematically than the 
original ones. In particular it can be shown that any solution of this system can 
be expressed as a linear combination of some “elementary solutions”, usually 

called modes, which are characterized by a complex frequency  = + i  the 

time dependence of each mode is consequently of the form exp(i(+ i  )t) an 

expression which shows that, according to the sign of , the solution will either 
increase or decrease exponentially. It is thus clear that the system will be 

stable if, for all the elementary solutions,  is larger than zero. 
The analysis and numerical computation of the possible modes and of their 
respective frequencies requires the use of a formulation, called the variational 
or weak formulation, which is described in the next section. 
 
4. The variational formulation  
 
The transformation of the problem, expressed in terms of differential 
equations, into a variational one is necessary in order to be able to use finite 
element methods in the numerical analysis.  It replaces a system of 
differential equations with a system of algebraic ones. The advantages of this 
variational formulation are as follows: 

• It reduces the computation of the frequencies corresponding to the 
different modes to the problem of finding the eigenvalues of an operator in 
an infinite vector space, which is more generally referred to as the spectral 
problem.   

• It makes it possible to show that the fluctuations of the electromagnetic 
force field can be considered as a function of the fluctuations U and H 



corresponding respectively to the velocity and the interface displacement 

in the vertical direction, and also of the frequency .   

• The variational methods have been developed in the frame of functional 
analysis, a domain of mathematics that considerably generalizes the 
Fourier series and integrals techniques, making it possible to solve the 
problem without having to simplify the geometry of the cell. 

 
At this point it is worth noting that the variational formulation for the 
fluctuations is again solved without approximations. It takes account 
particularly of: 
i) all terms remaining after the linearization process (surface current density 

on the interface, and all the other terms depending on U and H( see [5] for 
details)); 

ii) the time dependence of the potential vector, and its 1/r behavior at infinity; 
iii)  the geometry of a real cell, without simplification. 

 
We also note that the variational formulation, used for the calculation of the 
electrical potential and of the induction magnetic field, results in an expression 
for the Lorentz force field in which the dependence on U, H and appears 
very elegantly.  With a force field (depending on U, H and the 
hydrodynamic equations implicitly contain,retaining its entire complexity, the 
elementary coupling introduced in [4]. 

 
5. Numerical calculations  
 
What are the mathematical questions and difficulties encountered when trying 
to numerically compute the solutions? In particular, how can we effectively 
obtain the frequencies and modes?  
As already mentioned above, a customary approach in numerical analysis is 
to make use of a finite element method. The basic idea of such a method is to 
approximate an infinite dimensional function space by some of its finite 
dimensional subspaces, the dimensions of the latter being determined by the 
required accuracy. With these techniques the eigenvalue problem in an 
infinite vector space is reduced to a classical eigenvalue problem (in a finite 
dimensional space). Our problem is now to pick out of the set formed by the 
eigenvalues only the ones that are significant, typically 12 in number, and to 
compute them in a way ensuring that all of them are determined with the 
same accuracy. 
In order to do that we start by computing the so-called gravitational (or 
hydrodynamic) modes which correspond to the situation in which the fluids 
are submitted to the gravitational force field only. This set of gravitational 
frequencies has to be looked at as the first step of the iterative procedure, 
used to get the solutions, which consists in increasing the electrical current 
step by step from zero up to its operating value. The frequencies, calculated 
at each step,  are plotted in the complex plane; each mode thus has its “path” 
in the complex plane, one extremity of which represents the frequency for the 
gravitational mode and the other, the frequency at the operating level of the  
current. We name them MHD frequencies (the corresponding solutions being 
MHD modes). 
 



Three important remarks are in order: 
1. One could in fact start the iterative process with other frequencies than 

the gravitational ones. We choose to start with them because these 
frequencies can be easily computed with an algorithmic procedure in which 
the first step is approximated by the trivially calculated gravitational modes 
corresponding to a simple cuboidal cell. 

2. At each step the frequencies and modes are obtained with the help of 
an algorithm which makes use of both an “inverse power method” and a 
“Galerkin approximation” [8]. This algorithm delivers all the frequencies with 
the same accuracy; it is moreover capable (and this is quite unusual) of 
handling situations corresponding to a degenerate spectrum. 

3. At each step of the algorithm the modes are elements of a subspace, 
of the function space mentioned above, but they are not (as one might infer 
from some of the published papers in this domain) linear combinations of 
the gravitational modes. In other words at each step of the calculation the 
12 modes considered generate different subspaces of the function space. 
Gravitational modes are in general the only subspace the elements of 
which can be expressed as pure gradient fields (generally the MHD modes 
have both gradient and curl parts). 

 
6. Examples 
 
Here are the assumptions on which the model is based: 

• The fluid flows are described by the classical equations of fluid dynamics: 
Navier-Stokes equations for the steady state and linearized Euler’s 
equations (with the damping factor (see  [7])) for the fluctuations. 

• The electromagnetic fields are described by quasi-static Maxwell’s 

equations, i.e. Faraday’s (with the t B term) and Ampere’s laws. 

• The geometry is the exact shape of the actual cell, without any 
simplification. 

• The ledge shape is assumed to be known, either from measurements or 
by calculation. 

• Effects related to the generation and release of gas bubbles are ignored. 
 

Let us now present the results of numerical calculations performed for two 
specific examples using code developed at the “Ecole Polytechnique Fédérale 
de Lausanne” in collaboration with algroup’s Technology Center Chippis.  
We consider the case of an end-to-end 139’000 Amps cell, shown 
schematically in figure 1, in two different situations: in the first one the cell is 
oscillating whereas in the second the cell is unstable after changing two 
corner anodes due to the presence of bottom crust lying on the cathode (poor 
bath cleaning). 
 
a) The steady solution 
 
We start by computing the steady solution.  
Since the shape of the bath-metal interface is one of the unknowns of the 
problem it has to be computed; this is done iteratively as follows:  
At each step one takes the approximation of the interface obtained in the 
preceding step, and calculates the corresponding electrical potential and 



induction magnetic field. The latter, which is computed with the Biot-Savart 
formula, takes into account the electrical currents both inside and outside the 
cell.  
It should be mentioned that since the interface is fixed at any given step in 
these calculations, (it has been obtained at the preceding step), one or other 
of the jump conditions has to be relaxed. The condition that has been relaxed 
is then automatically fulfilled when the correct interface is reached at the end 
of the iterative procedure (see [6] for details).  
Figure 2 represents the interface obtained in this example. It shows that the 
assumption of a flat interface commonly used in simple models is certainly a 
poor approximation, especially in the neighborhood of the risers located at the 
extremities of the cell. 
 
 
 
The horizontal components of the steady velocity field, in the middle of the 
aluminum layer, are shown in figure 3. 
 
 

 
 

b) The frequency spectrum 
 
As explained in the previous sections the computation of the frequency 
spectrum starts by calculating the gravitational frequencies and modes. They 
are represented in figure 4 by small triangles located along the real axis. The 
MHD frequencies and modes corresponding to the operating values of the 
electrical current are reached through an analytic continuation during which 
the current is slowly increased from zero up to its operating value. The paths 
followed by the frequencies in the complex plane during this analytic 
continuation process are represented in the same figure. It is important to 
note that this picture represents calculations of the frequencies performed 
without the damping factor used in [7]. The effect of the latter corresponds to 
the straight green line parallel to the real axis. One can see that the cell is 

stable, the most critical frequency of 0.029s-1 at full operating current being 
well away from the stability limit. 
 
 
c) The anode current (oscillating cell) 
 
In order to check the validity and the accuracy of the computed frequency 
spectrum we compare the values obtained with those resulting from anode 
current recordings performed on the cell for which the calculations were 
made. Figure 5 shows an anode current recording in a cell showing MHD 
instability unrelated to anode change, and figure 6 the Fast Fourier Transform 
of that current, which gives the frequency spectrum.  There is very good 

agreement between the main peak in the FFT at 0.027s-1 and the 

corresponding calculated critical frequency of 0.029s-1 shown in figure 4.   
 



 
 
d) The frequency spectrum (after anode change) 
 
In the second example we consider the same cell after two corner anodes 
have been changed, under the assumption that some bottom crust is lying on 
the cathode because of poor bath cleaning. As in the previous case we look 
again at the spectrum and at the anode current. The computed frequencies 
are shown in figure 7.  
 
 
A comparison with figure 4 shows that the frequencies have shifted and the 
shapes of their paths have altered (note that in figure 6 the variable is the 
frequency  new whereas  this variable is 2 =  in figure 7). In particular, 

the imaginary part of the spectrum has changed drastically, with the path at 

0.0388s-1 reaching the instability limit.  The cell did in fact become unstable 
after this double corner anode change, confirming the prediction. 

 
e) The anode current (after anode change) 

 
Figures 8 and 9 are analogous to figures 5 and 6 above.  

 
 
Again a comparison between figure 7 and figure 9 shows excellent agreement 
between the main peak of the Fourier analysis of recordings and the unstable 
frequency given by the numerical computations. 
 
From these results we draw some important conclusions: 
1. The numerical simulations predict frequency values that agree 

exceptionally well with the observations made on the actual cells. 
2. The actual effects of changing the two corner anodes are accurately 

mirrored in the stability diagram. The fluid motion has reached an unstable 
state. 

3. The frequency spectrum reflects the state of the cathode 
 
A further numerical simulation of operation after corner anode changing with 
proper bath cleaning predicted that the cell would remain stable, and this 
prediction was in fact confirmed in practice.   
 
 
7. Physical phenomena                    
 
Up to now the stability question has been considered from a mathematical 
point of view only. Although physical laws have been important in deriving this 
model, as well as in the variational formulations and in the choice of the 
algorithms, our main goal has always been to write a computer program 
capable of calculating frequencies and modes accurately enough to help 
engineers in their tasks. 



Let us now turn to the physical aspects of the mechanisms generating 
instabilities. It is legitimate to ask: is it possible to obtain some physical 
insights from the variational formulations used to solve the stability problem? 
Before trying to answer this question let us begin with an important remark. 
As is proved in [5] the variational formulations are obtained from the set of 
differential equations and conditions describing the fluctuations through some 
mathematical manipulations. Conversely it can be shown that (under 
reasonable regularity conditions) the system of differential equations and 
conditions can be fully recovered from the variational formulation. This 
formulation thus clearly contains the same physical information as the 
differential equations we started with. It may be worth keeping in mind that in 
physics, laws expressed in terms of differential equations are generally 
derived from variational formulations too. In fact the differential and the 
variational formulations complement each other and can be considered as 
equivalent. 
As with linearization we will not go into details here. We will however mention 
that when one gets acquainted with variational formulations, physical 
phenomena can be studied by introducing appropriate subspaces of the 
function space in which the solutions are computed. In this way it is for 
example possible to recover the results obtained from the very simple model 
derived in [9], but in a more general context. 
Although it is rather difficult to identify in the variational formulation the 
different physical mechanisms generating instabilities (one should note that 
this is equally true of a description in terms of differential equations), one can 
study, with the help of the numerical simulation that has been developed, the 
influence of the different field contributions on the imaginary parts ( of 
the frequencies and consequently on the stability. Qualitatively the behavior of 

can be summarized as follows. 
 strongly depends on the steady electrical current distribution, which 

is also one of the main factors determining the shape of the bath-metal 
interface. 

is strongly affected by the presence of the linearized convection 
terms. In some cases their effects are even stronger than those of the 
steady electrical current distribution. This contribution is almost certainly 
related to the Kelvin-Helmoltz instability studied in [1]. 

3. The so-called induced currents (the contribution to the electrical current 
density resulting from the motion of the fluid in the presence of the 
induction magnetic field) are also responsible for some significant 
contributions to  

4. Finally and surprisingly enough the time derivative of the induction 
magnetic field, which appears in Faraday’s law, cannot be disregarded. It 
may induce up to 50% variation in the factor  In the frequency variable 
this term enters the variational formulation through the expression i A 
which appears in the current density. 

 
8. Discussion and conclusions 

 
As we have seen in the above examples the chosen variational formulation 
has several advantages. 



• It is immediately suitable for a numerical approach using a finite 
element method. 

• With the use of this method the values of the frequencies turn out to be 
the solutions of an eigenvalue problem. Making use of rather sophisticated 
techniques the physically significant frequencies are obtained with a special 
algorithm that can handle degeneracy and also compute all the frequencies 
with the same accuracy. 

• Studying the spectrum makes it possible to predict the maximum 
current at which the cell can be run without becoming unstable. 

• Some disturbances of particular practical importance can be 
numerically studied, such as anode changing, tapping metal or the 
presence of bottom crust. 

• When approximations of the model are required in order to throw light 
on particular mechanisms that may affect stability, the variational 
formulation is particularly suitable because it can be done in a way that 
ensures that the basic physical phenomena are taken account of. 

An approach similar to the one presented in this paper has been introduced in 
[10]. As far as we are aware, however, the authors of that paper neglect some 
of the effects we include. 
As pointed out in the introduction, two different points of view can be adopted 
in the study of instability problems. Our purpose here is neither to give an 
exhaustive list nor a detailed account of the recently published papers.  We 
however would like to clearly state that, as shown in the previous sections, the 
effects of the different fields on stability cannot be easily disentangled, for all 
of them are significant. This means that work like [1] which focusses on some 
particular aspects of instabilities must depend on very simple models that can 
throw light on some of the underlying mechanisms leading to instability. 
Results obtained in this way are clearly of a qualitative nature only.  
In conclusion we see that, with the help of a variational formulation and some 
of the powerful tools developed in numerical analysis, we have been able to 
build a numerical simulation that describes the behavior of the cell and yields 
results that agree exceptionally well with direct observations of the actual cell. 
This unique tool can be used for instance in designing modifications to 
existing cells and in the study of cell voltage behavior. Furthermore, it can be 
used to test ideas for improving the MHD of the cell which would otherwise 
require costly, time-consuming and perhaps risky experimental campaigns in 
operating potlines.  
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Figure 1 : Example of cell geometry used for mhd calculations  

 
Figure 2: Bath-metal interface, max min 84h h mm− =  

 

scale :       15 cm/s  
 
Figure 3: Horizontal velocity field within the metal 



 
Figure 4: Stability diagram: the x corresponds to the paths of the frequencies 
at the different steps of the iterative procedure.  
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Figure 5: Recording of the anode current in a cell showing MHD instability 
unrelated to anode change 
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Figure 6: FFT of the current represented in figure 5. 
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Figure 7: Stability diagram (after anode change). 
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Figure 8: Recording of the anode current in a cell showing MHD instability 
related to anode change 

 
Figure 9: FFT of the current represented in figure 8.  
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